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LETI’ER TO THE EDITOR 

Destruction of the devil’s staircase 

G Forgacsf and Zhang Yi-Cheng 
Physics Department, Brookhaven National Laboratory, Upton, Long Island, NY 11973, 
USA 

Received 3 June 1985 

Abstract. The one-dimensional king model with oscillating interaction is considered in 
the presence of a magnetic field. The devil’s staircase found for convex interaction is 
destroyed and the system crosses over to a harmless staircase. 

It has been shown (Bak and Bruinsma 1982) that the ground states of the one- 
dimensional Ising model with infinite range convex antiferromagnetic interaction form 
a devil’s staircase (Aubry 1980) as a function of the external magnetic field. If the 
interaction is of arbitrary finite range, but still convex, the devil’s staircase crosses over 
to a harmless staircase (Shinjo and Sasada 1985). On the other hand, in the one- 
dimensional Ising model with ferromagnetic nearest-neighbour and antiferromagnetic 
next-nearest-neighbour interactions the devil’s staircase also decays to a harmless one 
(Villain and Gordon 1980). In the latter model the interaction is non-convex and of 
short range. 

At this point one may ask the question what is responsible for the destruction of 
the devil’s staircase. Is it the finite range of the interaction or its non-convexity or both. 

In the present letter we study the case of an infinite range, oscillating interaction. 
We show that there cannot be a devil’s staircase even in this case. By this we arive at 
the conclusion that if any of the conditions put on the interaction in the Bak-Bruinsma 
(BB) model (or the equivalent Hubbard model, Hubbard 1978) is not satisfied, the 
devil’s staircase disappears. 

Our model is defined by the Hamiltonian 

where Si are Ising spins (*1) on a one-dimensional lattice. The summation in the 
second pair extends over all pairs with i # j .  The interaction J is chosen as 

J ( I i - j l )  = (--l)‘-‘/[i-j[a. (2) 
J ( l i - j l )  gives the interaction between up spins Si and S, which are Pth neighbours 
(P = 1,2, . . .) and a is typically a positive integer of order one. Just as in the BB case, 
for H < 0 the unique ground state of (1) is Sk = -1 for all k, whereas for H > 2 J (  i )  
(this sum in our case is convergent for any a) the ground state is Sk = +l.  Following 
Hubbard (Hubbard 1978) we can construct the ground state for any rational fraction 
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q = N + /  N = m /  n with fixed N,. Here N ,  and N correspond to the number of up 
spins and total number of lattice sites respectively. 

It turns out that the ground states in the present case fall into two groups depending 
on whether m is even or odd. In the odd case the structure follows exactly that of 
Hubbard (Hubbard 1978, Bak and Bruinsma 1982). For example, for q = f  one can 
show that by shifting any number of up spins in figure l ( a )  the energy will be increased. 
For q = 3 the ground state is given in figure 1( b).  The general rule for constructing 
the ground state in the even case follows from this figure. One first determines the 
locations of the up spins in the corresponding Hubbard case ( J  given by ( 2 )  with P = 1 
for any pair; Hubbard 1978) within the period n. (For q = m / n ,  there are m up spins 
in the period n ; the lattice constant is unity.) Then one reverses the order of the up 
spins in every second period relative to the Hubbard case, as shown for q = 3 in figure 
l ( b ) .  
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Figure 1. The ground state for ( a )  9 = f and ( b )  9 = f .  

If J is convex, Bak and Bruinsma proved that for any q there is a finite interval 
in N in which the state with this q is stable. This led to the devil’s staircase. Following 
Bak and Bruinsma we can also study the stability interval of our states by comparing 
their energy with that of a state obtained by flipping one spin (either up or down). 
By flipping a single spin the system will rearrange itself by creating solitons in order 
to reduce the energy. In the BB case such a spin flip always costs energy, because the 
created solitons repel each other. This leads finally to a finite stability interval in H. 
In the present case it turns out that for both even and odd m the solitons have attractive 
interaction energy and therefore stay together. One can show that for a given q the 
number of solitons, created by flipping a single spin, is n and the number of up spins 
I ,  within one soliton is given by the solution of 

n l , = 2 m  k * l  ( 3 )  

with the smallest integer k. For even m, k gives the number of periods which are 
covered by the n solitons. For odd m, the same number is given by 2k. (Remember 
that for even m the period is 2n.) The * signs in (3) correspond to flipping one down 
spin up ( + )  or one up spin down ( - ) .  For example, for q = f ,  n = 3, m = 1 and from 
(3)  in the case of flipping a down spin up k = 1, I ,  = 1 .  For q = 213, k = 2,  I ,  = 3.  Using 
(3) one can easily calculate the width L of a soliton. One gets that L = 2 k  in both the 
even and odd cases. The above considerations are summarised in figure 2 for q = f 
and i, where the corresponding soliton structures are shown for the + sign in (3). 
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Figure 2. Soliton structure for ( a )  q = f  and ( b )  q = f .  Note that the number of up spins 
is increased by one with respect to figure 1. 

Since the interaction between solitons is attractive, the more solitons we have (the 
larger n is) the more they will reduce the energy of the ‘excited’ (flipped) state. If for 
a given q we denote by E,  and EL the energies of the ground state and the ‘excited’ 
state respectively, then one can write 

A E ,  = E b - E, = A, - nB, (4) 

where A, is the energy required to flip a spin without considering the interaction of 
the solitons and nB, is the total soliton interaction energy. In the BB case, since the 
solitons repel each other, one can separate them infinitely apart and by this one can 
ignore their interaction. A, has been shown (Bak and Bruinsma 1982) to be a finite 
positive number, not to be proportional to n. In the present case one cannot separate 
the solitons; they will stick together and B,>O. It is then evident from (4) that for 
q’s with sufficiently large n the second term may overcome the first one. This implies 
the stability interval of the found ground state is zero. If a given state is unstable with 
respect to single spin flips it is favourable to flip more spins to saturate the number of 
solitons to creat a soliton lattice. This soliton lattice, however, is nothing but another 
commensurate state with a larger q (if down spins are flipped up). In order to find 
out whether this new state is stable or not, one can repeat the above procedure by 
flipping spins until A E ,  in (4) is positive. 

Since it is those q values with large n which in the BB case give the fine structure 
of the devil’s staircase, this fine structure in the present case disappears. 

We were not able to calculate analytically A, and B, and, therefore, could not 
determine at which n the above discussed stability sets in. It is likely, however, that 
states with small n can survive (one does not expect all the commensurate states to 
become unstable) and so the devil’s staircase crosses over to a harmless staircase. 

We wish to thank Per Bak and R Bruinsma for useful discussions. One of us (GF) 
thanks the Brookhaven National Laboratory for the hospitality during his stay when 
this work was performed. 
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